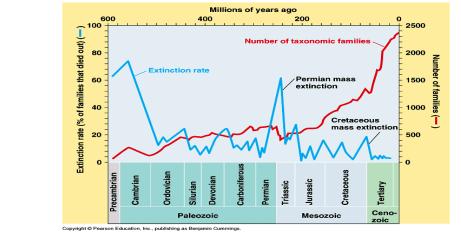
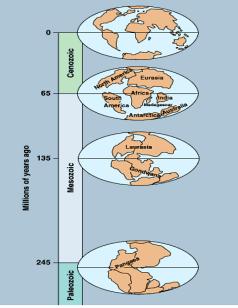

<u> Cracing Phylogeny</u>

A. <u>Fossils</u>:


•Some fossils form as ______ is weathered and eroded from the land and carried by rivers to seas and ______ where the particles settle to the bottom. Deposits pile up and ______ the older sediments below into rock. It is usually just the ______ of the organism that get preserved as a fossil, while soft tissue decays. And sometimes ______ seep into the tissues and replace its organic material as is done with ______.

•Other fossils form by leaving an empty ______ that becomes filled with minerals. Some ______ fossils leave behind ______ or burrows that show the animal's ______. And sometimes an entire preserved organism gets found in ______-fossilized tree sap, or frozen in ice, or in ______ where decomposition is slowed down.

•There are 2 methods to date fossils: ______ dating and ______. The deeper a dating. Relative dating relies on the position of fossils in _______. The deeper a fossil is in the rock layers, the _______ it is. This tells us the _______ in which groups of species existed but not the _______ of a fossil. Absolute dating does not tell us the "absolute"/ errorless age of a fossil, but gives us a close number. Absolute dating is done with the aid of _______ dating. This method relies on the fact that all fossils contained _______ when they were alive and these isotopes _______ at a fixed rate. For example, _______ has a _______ has a _______ fossils, while radioactive isotopes with longer half-lives like _______ with a half-life of 4.5 billion years is used to date older rocks.



Copyright @ Pearson Education, Inc., publishing as Benjamin Cummin

•The _______, and many _______. The 4 eras starting with the oldest are the ______, paleozoic, mesozoic, and ______. The geological time scale is not divided arbitrarily, but corresponds to times of great change.

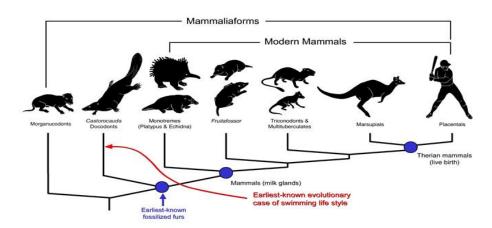
•The continents are not ______, but are drifting on ______above a hot mantle. The movement of plates leads to ______building, ______, and _____. About ______plate movements brought the land masses on earth together into a "supercontinent" called ______. Species that had evolved in isolation were now together, shorelines ______, causing a _____.



Copyright © Pearson Education, Inc., publishing as Benjamin Cummings

•The fossil record reveals an episodic history with long periods punctuated by a turnover in species composition. These episodes include ______ and ______. One adaptive radiation that was particularly impressive was the ______ between the Precambrian and Paleozoic eras. This marked a drastic change in ______ life. The Cambrian animals were the first to have ______ body parts like ______, skeletons and claws. This allowed for many new complex body designs and altered many ______ relationships. In fact, many believe that all animal ______ that exist today evolved during this time.

•Adaptive radiation most often follows mass extinctions. There have been many extinctions in earth's history, but 2 are most noted. The one we already spoke of 250 million years ago (the Permian extinction) when pangaea came together. ______ of life was destroyed allowing then for mammals and _______ to flourish. The other extinction occurred ______ in the ______ period. This marked the end of the _______ and furthered the evolution of _______--flowering plants. Many theories exist to what caused this mass extinction. Volcanic eruptions in what is now India blocking out the sun, an ______ colliding in the Yucatan Peninsula sending a great cloud of dust into the air and also blocking out the sun for possibly years and setting off a ______ across the N.A. continent killing most life there upon impact. The species that managed to survive the crisis adaptively radiated to fill the vacant zones caused by the extinction.


Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

B. <u>Phylogeny and Systematics</u>:

•______ is the evolutionary history of a species . Reconstructing phylogeny is done with the aid of _______-the study of biological _______ in an ______ context. Biologists represent the genealogies of organisms with _______trees -diagrams that trace evolutionary relationships as best that can be determined. Systematists use _______, the identification and classification of species, in their attempts to arrange organisms in categories that reflect their ______ history/ phylogeny.

•Phylogenetic trees are ______ of past history based on available data. They are based upon ______ evidence, comparative anatomy, embryology, and comparing ______ and proteins. Comparing DNA and/or proteins is the most precise method in constructing evolutionary relationships if the DNA / proteins are available. Then DNA can be analyzed by use of ______

or ______-comparing the actual nucleotide sequences of DNA segments. To measure the differences between two species, one can then identify nucleotides found in both species and determine if they have common ancestry.

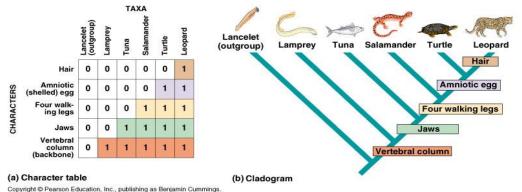
Where does Castorocauda fit on the mammalian family tree?

Graphics: Mark A. Klingler / CMNH

the two skulls match almost perfectly, bone for bone. It is highly unlikely that chimpanzees and humans have ______ origins.

Q: How does this image display convergent evolution?

C. Search for Fossilized DNA:


•Even when a frozen or dried fossil is recovered, it is rare that the DNA is intact. Often the DNA is contaminated from ______ or _____ or it has changed shape/ broken down. Pieces of DNA mined from any fossil represent only fractions of an organism's whole genome. This is the case with the ______, the DNA found is in pieces and this makes it difficult to clone an entire extinct organism.

D. <u>Phylogenetic Trees Versus Cladograms</u>:

•Phylogenetic trees have 2 significant features: 1) the location of branch points along the tree symbolize the relative ______ of origin of different organisms 2) the extent of divergence between branches represents how different 2 organisms have become since branching from a common ancestor.

•With a _____, the actual organisms are treated as terminal _____, and the branching structure is determined solely by _____

characteristics- ______ structures that evolved in an ancestor that are common to all species on ______ branch of a fork in the tree, but not common on the other branch.

•So basically a cladogram is a ______ of phylogenetic tree. And the *main* difference between phylogenetic trees and cladograms is with phylogenetic trees, the ______ of the branch is proportional to ______ / divergence from a branch point. With cladograms, the length of branches is ______ and only ______ is significant.