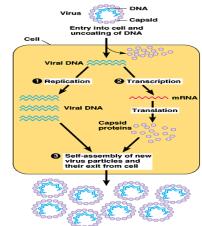
<u>Viruses and Bacteria Notes</u>

A. <u>Virus Structure</u>:

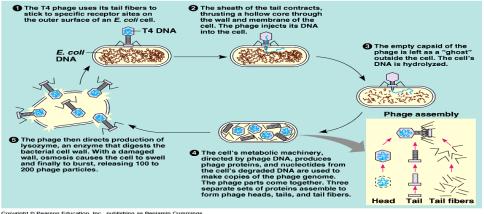
•Viruses are in contrast to bacteri	ia. Viruses are
(DNA or RNA) enclosed in a	coat called a Also
some viruses have a	that helps them infect their host.
These viral envelopes are usually derived from	n the cell to help the virus be
unnoticed by the immune system and are made	e up of and
Some viruses also car	rry a few in their
capsids. Viruses come in many shapes and ma	ay be shaped or more complex in
structure. Recall the most complex viruses cal	lled infect


bacteria. Membranous envelope RNA Cap Head DNA Tail sheat Tail Cansid Capsomere of capsid Glycoprotein Glycoprotein 10 nm 50 nm 50 nm 50 nm T4 (a)Tobacco mosaic virus (b) Adenoviruses (c)Influenza virus (d)Bacteriophage

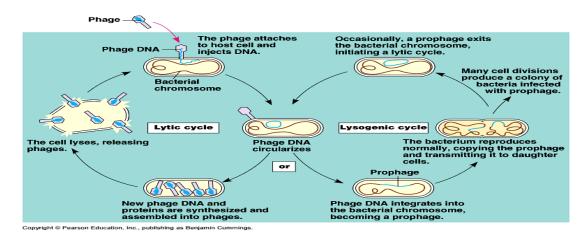
B. Virus Overview:

•Viruses can **ONLY** reproduce within a _____ cell. So when a person with a cold sneezes, the viruses released are not "activated" until a host, namely another person, gets the virus into their own body. This is because viruses lack ______ for metabolism and cannot make their own ______. Which is why many scientists classify viruses as ______ things.

•Each type of virus can only infect a limited range	ge of host cells called the		
Viruses are able to identify their hosts by	receptors on the surface		
of the host cells that form a fit with receptors on the surface of			
the virus. Some viruses' host range is so small it	includes only species.		
While other viruses like can infe	ect raccoons, skunks, dogs and humans.		
In addition, most viruses that infect eukaryotes a	re specific. For		
instance, cold viruses infect only the cells of the	tract and		
HIV infects only			

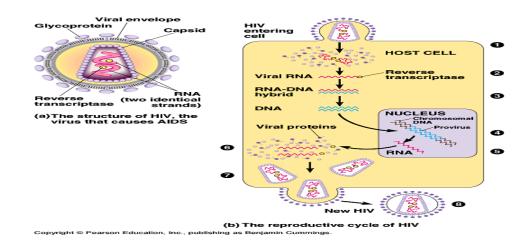

•Once the virus is inside the host cell	ll it takes	_ of the host.	It reprograms
the cell to make copies of the viral _	and viral		The host
cell provides the	, enzymes, ribosomes,	, RNA, amin	o acids, ATP,
etc. for the making of viral parts.			

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.


C. Viral Cycles:

•The______ cycle is a viral cycle in which during the last stage of infection _______ of viruses burst free from the host cell causing the host cell to ______ or break open. The lytic cycle first destroys the host's ______ and eventually _______ the host, then the viruses are free to go infect other healthy cells. A virus that reproduces by this lytic cycle is called a ______ virus (virulent = very infectious). Virulent because of host destruction and the process is very fast, ______ minutes.

•Luckily for host cells, many have evolved to protect themselves from viral infections. For example, some bacterial hosts have _______ their surface receptors and are no longer recognized by a particular bacteriophage. Also, some host cells have ______ that are able to break down viral DNA or RNA. However, just as hosts evolve to protect themselves from viruses, viruses also evolve to counteract this.


•The _____ cycle is when a virus infects a host cell but doesn't _____ the host. Also, with the lysogenic cycle, the viral DNA does ______ destroy the host's DNA. Instead, the viral DNA becomes ______ into the host's DNA. Once the viral DNA is a part of the host's DNA it is called a ______. It does not interfere with the normal functioning of the host cell. But every time the host cell reproduces, the viral DNA gets copied as well. This can go on for ______ until the lysogenic cycle is triggered to switch to the ______ cycle and the viruses are free to infect more cells. The "trigger" varies but is often physical or emotional _____.

•In addition, some prophage genes in the lysogenic cycle can alter the ______ of the host cell. For example, the bacteria that causes scarlet fever would be harmless to humans if it were not for the prophage genes in the bacteria that cause the host bacteria to make ______.

D. <u>RNA Viruses</u>:

•Most viruses have ______ as their genetic material. While there are different types of RNA viruses that work differently within the host cell, we will focus on the one that causes AIDS - the _______. Retro means ________ because these viruses have ______ and use an enzyme within the virus itself called _______ to make ______. The DNA is then integrated into the host's DNA as a _______ where it will be replicated over and over again in a ________ cycle. This is why HIV infected individuals can appear unaffected for so long (sometimes up to 10 years). In addition, instead of lysing the cell early on, the HIV viruses can _______ off from the host cell and go infect other ______. This cycle can then at any time switch to the lytic cycle and destroy _______ cells enough that there is almost a total loss of immunity and one no longer just has HIV, but ______. Recall that HIV is a difficult antigen for the body to destroy because it keeps _______ and the immune system cannot keep up with it. The reason for all the mutations of RNA viruses is because they do not have the ________. This drug interferes with the action of

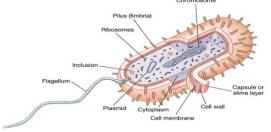
E. <u>Vaccines and Emerging Viruses</u>:

•Recall that vaccines are ______ or _____ forms of pathogens (viruses or bacteria). Because they are dead or weakened they _______ cause disease, but instead stimulate the immune system to mount a defense in the event of a "live" attack. The first vaccine was made by a physician named _______. He noticed that milkmaids who contracted _______ (a mild disease that usually infects cows) were resistant to _______ (a disease that often resulted in death). He then scratched a _______ with a needle containing fluid from the sore of a milkmaid who had cowpox. When the boy was later exposed to smallpox, he ______ get sick. The cowpox and smallpox viruses are so _______ that the immune system cannot distinguish them.

•While vaccines can be used before one gets a _____ or _____ infection, antibiotics **cannot** be used on ______ infections. Vaccines are usually given ______ one gets an infection, while antibiotics are used ______ one gets a bacterial infection. Antibiotics can ______ be used on ______ infections because antibiotics kill bacteria by inhibiting ______. Recall that most viruses lack ______. However, some viruses like HIV do have enzymes and that is why AZT is being used to stop the action of reverse transcriptase. In addition, antibiotics like ______ interfere with the enzymes that build ______. And viruses ______ have cell walls, while bacteria do.

•Viruses seem to always be ______ because of several reasons. One reason that was already mentioned was that RNA viruses ______ often. This is why there is a _______shot almost every year for the RNA influenza virus. In addition, new viral diseases arise as viruses ______ their ______. This was the case with the _______ which was spread from _______ in SW United States to humans who inhaled the dust containing traces of urine and feces from the mice. Also, increased _______, blood transfusion technology, sexual promiscuity, and ______ drug use have _____ viral disease cases. And as new roads are cleared and man explores once ______ plants, animals and tribes, viruses are spread. With plant viruses, they can also be spread by _______ that act as carriers and by farmers who inadvertently transmit the viruses on their gardening ______. Agricultural scientists are now breeding viral ______ crops that resist many viruses.

F. <u>Viroids and Prions</u>:

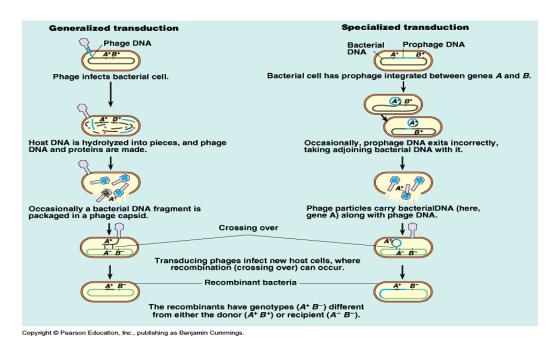

•______ are smaller than viruses and are circular pieces of ______ that only infect ______. These RNA molecules can only replicate inside a host plant. When they do they disrupt plant cell metabolism and stunt plant _____.

• ______are not nucleic acids like viroids, but are ______. Prions recently hit the news when they plagued the British beef industry causing _______disease. A prion is a ______ protein normally present in ______ cells. When the prion gets into a cell containing the normal form of the protein, the prion converts the normal protein to a prion version causing ______ brain diseases.

G. <u>Bacteria Structure</u>:

•Bacteria are ______. They are ______ and divide by ______ approximately every _____ minutes. Most are genetically ______ to the parent cell. However, due to the _____ generation times creating ______ numbers of bacteria, new mutations arise often and bring about genetic variety.

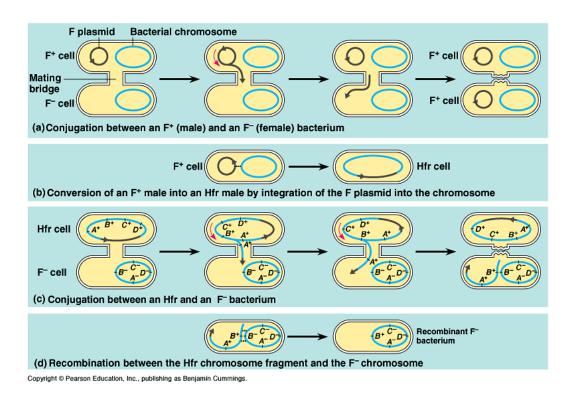
H. Genetic Recombinants in Bacteria:


•While mutations do bring about diversity, so does ______- combining DNA from 2 individuals into the genome of a single individual. There are 3 ways that this occurs: ______, _____, and

Transformation:

•Recall the experiments of	where heat killed	cells
transformed harmless cells into pathog	genic pneumonia that kill	ed the host
mouse. Transformation is the alteration of a bac	terial cell's	by the
uptake of foreign DNA from the environment. V		
cells took up a piece of DNA from the heat-killed	d cells which enable	ed the R cells to
get a Having this smooth "coat	t" disabled the mouse's in	nmune system
to destroy the pathogenic bacteria and the mouse	died. This transformation	on occurred
because some bacteria are able to	_ closely related DNA in	the environment
and it into their genome. While I	not all bacteria can pick u	p foreign DNA,
they can be stimulated to pick up DNA with the	help of	This
technique is used to stimulate bacteria to incorpo	orate DN	A that code for
such as insulin for diabetic	·S.	

Transduction:


•Transduction is when	carry bacterial genes from o	ne host to
another. There are 2 types:	transduction which involves the	
cycle and	_ transduction which involves the	cycle.

Conjugation:

•Conjugation is the bacterial version of _____ in which one bacterial cell transfers _____ to another bacterial cell. The source of this DNA is usually from a _____. It is a _____ process in which the "male" makes a temporary cytoplasmic bridge called a ______ and transfers some DNA to a female. "Maleness" comes about due to the presence of a special piece of DNA called

the	(F=). Having the F factor enables the bacteria
to be the	of DNA.	

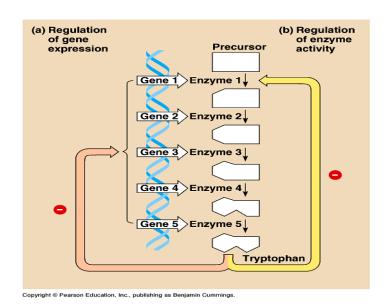
•______ are small pieces of self-replicating DNA in bacteria that are _______ from the nucleoid. While the F factor can be part of the nucleoid, it can also be part of the plasmid. If the F factor is in the plasmid, it is called the ______. It consists of _____ genes, most of which are required to make sex pili. Geneticists use the symbol ______ to denote a cell that contains the F plasmid and it is a "male". Cells lacking the F plasmid are _____ and "female". However, a _____ can become a _____ when 2 cells conjugate.

•But what if a bacterium didn't transfer just a plasmid by conjugation, but also transfered part of the _____? This occurs when a ____ cell incorporates the ______into its own ______. This creates what is called a _____ cell. Now with conjugation, this "male" Hfr cell will first undergo _______, then transfer part of the ______ (containing both a part of the original F plasmid and some genes from the bacterial chromosome/ nucleoid) to the _____ cell. Then ______ will occur between _______ regions of the newly transferred genes and the bacterial chromosome of the "female" cell.

I. <u>R Plasmids</u>:

•Some plasmids carry genes that make them resist	ant to
These plasmids are called	When bacteria containing specific R
plasmids are exposed to a specific antibiotic, they	R-plasmids code
for enzymes that are able to break down antibiotic	s such as or
This means these antibio	tics destroy the bacteria.
Then by, ani	ng number of bacteria become resistant
to antibiotics. This makes treating	infections more difficult.

J. <u>Transposons</u>:


•A	is a transpos	sable piece of th	hat can move from one
location to another.	In bacterial cells, transp	posons can move	the nucleoid,
between the	and	or from one	to
another	·		

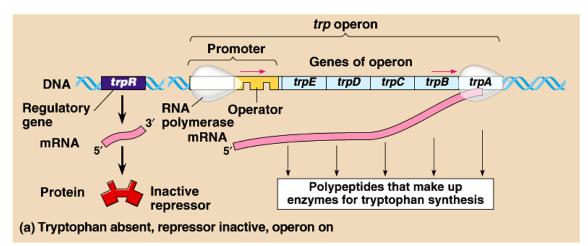
•Transposons are sometim	mes called "	_ genes".	This is misle	eading
because while	transposons do "jump" from o	ne locatio	n to another,	others just
make a	and the copy gets inserted else	ewhere.		

•_____ was the first person to identify transposons in breeding experiments with Indian ______ in the 1940's. She noticed changes in the color of corn kernels that could only be explained by "mobile" genetic elements capable of moving from one location to another in the genome.

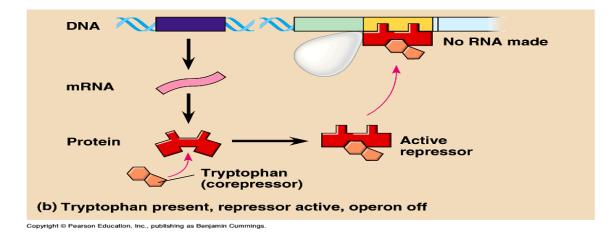
K. <u>Operons</u>:

•______(the making or breaking of molecules) need to be controlled. For example, if an *E. coli* bacterium is deprived of one of the amino acids ________from its environment in the colon, it needs to make its own to survive. Cells can _______the numbers of specific enzymes made. If tryptophan accumulates in a cell, the cell shuts down the making of this amino acid by _______. This is ______ feedback inhibition because it is maintaining

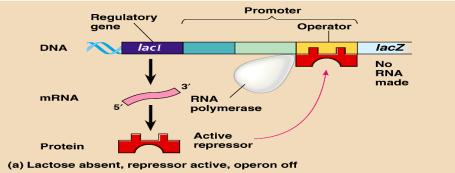
•The blocking of this metabolic pathway actually takes place at the level of stopping ______ of mRNA coding for these enzyme in the pathway. The ____ genes on the DNA molecule that code for the transcription of mRNA and later translated into tryptophan are ______ together on a chromosome. This segment of DNA is transcribed by one ______ site where ______ can bind to and begin transcription.

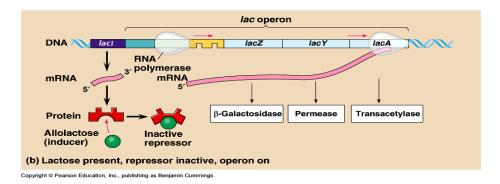

•However, the making of these enzymes can be "switched on" or "switched off" by a segment of DNA after the promoter called the ______. The operator controls

the access of ______ to the genes. The promoter + the operator + the genes they control = _____.

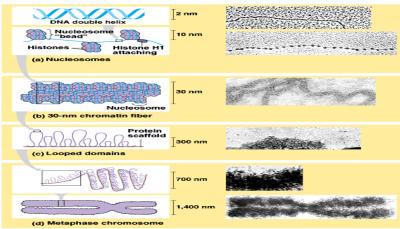

Operons:

•There are _____ types of operons we are going to learn about: ______ and _____. Repressible operons are ______ when a small molecule binds to its regulatory protein, where inducible operons are ______ when a small molecule binds to its regulatory protein.


•The tryptophan (trp) operon is a ______ operon because it is ______ by an ______ binding molecule. When no molecule is bound to the _____, the trp operon is ______. Located just upstream of the operon is a ______ gene that makes a _______. If a lot of tryptophan is present in the cell this ______ the repressor which then binds to the ______ and the operon is _____.


Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

•The _____ operon is an ______ operon because it is ______ when a small molecule binds allosterically to its ______ protein, removing it from the ______. The lac operon makes the enzymes that hydrolyze ______. When a bacterium is exposed to milk, this signals the bacterium it needs to make enzymes to break it down.


Copyright @ Pearson Education, Inc., publishing as Benjamin Cumming

•Repressible operons usually function in _____ pathways (the making of something). Where inducible operons usually function in _____ pathways (the breaking down of something).

L. DNA Packaging:

•Recall that DNA exists in its loose "stretched out" form called	during			
of the cell cycle. Then during	of mitosis and meiosis I,			
the chromatin condenses into X-shaped structures or replicated				
Eukaryotic DNA is also combined with a large amount of called				
There are 5 types of cha	rged histones that the			
charged DNA molecule wraps itself around. DNA is negative due to				
the groups. The combination of DNA wound around histones are				
called and has the appearance of	•			

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.